barak.voigt.voigt¶
- barak.voigt.voigt(a, u)[source]¶
- Compute the Voigt function using a fast approximation. - Parameters : - a : float - Ratio of Lorentzian to Gaussian linewidths (see below). - u : array of floats, shape (N,) - The frequency or velocity offsets from the line centre, in units of the FWHM of the Gaussian broadening (see below). - Returns : - H : array of floats, shape (N,) - The Voigt function. - Notes - The Voigt function is useful for calculating the optical depth as function of frequency for an absorption transition associated with an atom or ion. - The Voigt function H(a, u) is related to the Voigt profile V(x, sigma, gamma): - V(x, sigma, gamma) = H(a, u) / (sqrt(2*pi) * sigma) - where: - a = gamma / (sqrt(2) * sigma) u = x / (sqrt(2) * sigma) - The Voigt profile is convolution of a Gaussian profile: - G(x, sigma) = exp(-0.5 * (x / sigma)^2) / (sigma * sqrt(2*pi)) - and a Lorentzian profile: - L(x, gamma) = gamma / ((x^2 + gamma^2) * pi) - It is normalised; the integral of V over all x is 1. - This function uses a Taylor approximation to the Voigt function for 0 < a < 0.1. (Harris 1948, ApJ, 108, 112). Relative error with respect to voigt_wofz is < 10^-4.9 for a < 0.1. For larger a the exact calculation is done in voigt_wofz.